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a b s t r a c t 

Medical imaging systems often require the application of image enhancement techniques to help physi- 

cians in anomaly/abnormality detection and diagnosis, as well as to improve the quality of images that 

undergo automated image processing. In this work we introduce MedGA, a novel image enhancement 

method based on Genetic Algorithms that is able to improve the appearance and the visual quality of 

images characterized by a bimodal gray level intensity histogram, by strengthening their two underly- 

ing sub-distributions. MedGA can be exploited as a pre-processing step for the enhancement of images 

with a nearly bimodal histogram distribution, to improve the results achieved by downstream image pro- 

cessing techniques. As a case study, we use MedGA as a clinical expert system for contrast-enhanced 

Magnetic Resonance image analysis, considering Magnetic Resonance guided Focused Ultrasound Surgery 

for uterine fibroids. The performances of MedGA are quantitatively evaluated by means of various im- 

age enhancement metrics, and compared against the conventional state-of-the-art image enhancement 

techniques, namely, histogram equalization, bi-histogram equalization, encoding and decoding Gamma 

transformations, and sigmoid transformations. We show that MedGA considerably outperforms the other 

approaches in terms of signal and perceived image quality, while preserving the input mean brightness. 

MedGA may have a significant impact in real healthcare environments, representing an intelligent solu- 

tion for Clinical Decision Support Systems in radiology practice for image enhancement, to visually assist 

physicians during their interactive decision-making tasks, as well as for the improvement of downstream 

automated processing pipelines in clinically useful measurements. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nowadays, medical imaging systems play a key role in the clin-

cal workflow, thanks to their capability of representing anatom-

cal and physiological features that are otherwise inaccessible to

nspection, thus proposing accurate imaging biomarkers and clini-

ally useful information ( Lambin et al., 2017; Rueckert, Glocker, &

ainz, 2016 ). Medical images are considerably different from the

ictures usually analyzed in Pattern Recognition and Computer Vi-
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ion, as regards the appearance of the depicted objects as well

s the information conveyed by the pixels. As a matter of fact,

edical imaging techniques exploit several different principles to

easure spatial distributions of physical attributes of the human

ody, allowing us to better understand complex or rare diseases

 Toennies, 2017 ). The effectiveness of such techniques can be re-

uced by a plethora of phenomena, such as noise and partial vol-

me effects ( Toennies, 2017 ), which might affect the measurement

rocesses involved in imaging and data acquisition devices. In ad-

ition, computer-aided medical image acquisition procedures gen-

rally include reconstruction methods (producing two, three, or

ven four dimensional imaging data), which could cause the ap-

earance of artifacts. Image contrast and details might also be im-

aired by the procedures used in medical imaging, as well as by

he physiological nature of the body part under investigation. 
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Medical images actually convey an amount of information—

mainly related to high image resolution and high pixel depth—

that could overwhelm the human vision capabilities in distinguish-

ing among dozens of gray levels ( Ortiz, Górriz, Ramírez, Salas-

Gonzalez, & Llamas-Elvira, 2013 ). Improving the appearance—and

the visual quality—of medical images is therefore essential to

provide physicians with valuable information that would not be

immediately observable in the original image, assisting them in

anomaly detection, diagnosis and treatment. This kind of diagno-

sis includes two basic processes: image observation (visual percep-

tion), and diagnostic interpretation (cognition) ( Krupinski, 2010 ).

Errors occurring in these diagnostic and therapeutic decision-

making processes may have a significant impact on patient care,

most notably possible misdiagnoses. In this context, image en-

hancement techniques aim at realizing a specific improvement in

the quality of a given medical image. The enhanced image is ex-

pected to better reveal certain features, compared to their original

appearance ( de Araujo, Constantinou, & Tavares, 2014 ). In partic-

ular, these methods could have a significant clinical impact when

the dynamic range of the actual pictorial content is not commen-

surable with the range of the displayed data (i.e., monitor lumi-

nance response), as well as when the input image is character-

ized either by a high level of noise or by a low contrast ( Gonzalez

& Woods, 20 02; Paranjape, 20 09 ). This also applies to specialized

computer screens for diagnostic reporting. 

Although the majority of the enhancement techniques are typ-

ically applied to generate improved images for a human ob-

server, others are exploited as a pre-processing step to provide en-

hanced images to further algorithms for computer-assisted analy-

ses ( Paranjape, 2009 ). The first category includes techniques de-

voted to remove noise, enhance contrast and sharpen the details.

The second category, partially overlapped with the former one,

includes additional techniques such as edge detection and object

segmentation for automated processing ( Rangayyan, 2009 ). It was

shown that a high-contrast medical image could lead to a bet-

ter interpretation of the different adjacent tissues in the imaged

body part ( Chen et al., 2015 ). Accordingly, the resulting enhanced

image—in terms of signal intensities of different tissues—can facil-

itate the automated segmentation, feature extraction, and classifi-

cation of these tissues. 

In the clinical routine, Contrast-Enhanced (CE) Magnetic Reso-

nance Imaging (MRI) is a diagnostic technique that enables a more

precise assessment of the imaged tissues after the administration

of a Gadolinium-based contrast medium in patients ( Sourbron &

Buckley, 2013 ). MRI is currently the most prominent modality to

obtain soft-tissue imaging ( Brown, Cheng, Haacke, Thompson, &

Venkatesan, 2014 ), especially in oncology, since it provides signif-

icant improvements—in terms of image contrast and resolution—

between lesion and healthy tissue ( Metcalfe et al., 2013 ). For these

reasons, MRI is considered more suitable than Computed Tomogra-

phy in determining the extent of cancer infiltration. Furthermore,

the excellent MRI soft-tissue contrast has led to an increasing role

of this modality in target volume delineation for therapy applica-

tions, such as image-guided surgery and radiotherapy treatment,

and for patients follow-up (i.e., staging and assessing tumor re-

sponse) ( Evans, 2008 ). However, MRI data are affected by acqui-

sition noise ( Styner, Brechbuhler, Széckely, & Gerig, 20 0 0 ) and are

also prone to imaging artifacts, related to magnetic susceptibility

and large intensity inhomogeneities of the static magnetic field

(i.e., streaking or shadowing artifacts ( Bellon et al., 1986 )), espe-

cially using high magnetic field strengths. These aspects make MR

image enhancement a challenging task aiming at improving the re-

sults of automatic segmentation methods. The existing image en-

hancement approaches generally attempt to improve the contrast

level of the whole image and do not address the issues related to

overlapped gray level intensities; as a consequence, neither the re-
ion contour sharpness nor the image thresholding results can be

mproved. In the case of threshold-based image segmentation with

wo classes (i.e., foreground and background) ( Muangkote, Sunat,

 Chiewchanwattana, 2017 ), the input image is assumed to have

 bimodal distribution of the histogram bins ( Xue & Zhang, 2012 ).

hus, an appropriate image enhancement method that yields med-

cal images with a sharper bimodal distribution is required. How-

ver, determining the best pre-processing of an image—able to pre-

erve the structural information of the image, while enhancing

he underlying bimodal distribution—is a complex task on a multi-

odal fitness landscape that demands the use of global optimiza-

ion approaches. 

This paper presents a novel image enhancement technique

ased on Genetic Algorithms (GAs) ( Holland, 1992 ), called MedGA,

pecifically aimed at strengthening the sub-distributions in medi-

al images with an underlying bimodal histogram of the gray level

ntensities. Among the existing soft computing methods for global

ptimization, GAs represent the most suitable technique for this

pplication, because of the discrete structure of the candidate solu-

ions and the intrinsic combinatorial structure of the problem un-

er investigation. 

In this work, we apply MedGA to a clinical context involv-

ng CE MR image analysis, i.e., Magnetic Resonance guided Fo-

used Ultrasound Surgery (MRgFUS) for uterine fibroids. The per-

ormances of MedGA are quantitatively evaluated by means of the

ost relevant image enhancement metrics, and compared against

he conventional state-of-the-art image enhancement techniques,

amely, histogram equalization, bi-histogram equalization, encod-

ng and decoding Gamma transformations, and three instances of

igmoid transformation. Considering the possible clinical applica-

ions, MedGA is able to improve the visual perception of a Region

f Interest (ROI) in MRI data with an underlying bimodal inten-

ity distribution. In addition, MedGA can be used as an intelligent

re-processing step, in red any pipeline defined to realize an ef-

cient threshold-based image segmentation with two classes (i.e.,

inarization), applied to expert systems working on MRI data. In-

eed, image thresholding approaches performed on CE MR image

egions could considerably benefit from input data pre-processed

y MedGA. 

The main contributions of MedGA in the context of expert

nd intelligent clinical systems can be briefly outlined as follows.

edGA acts as an expert system by playing a two-fold role: ( i ) im-

ge enhancement to visually assist physicians during their inter-

ctive decision-making tasks, and ( ii ) improvement of the results

n downstream automated processing pipelines for clinically useful

easurements. The rationale behind the development of MedGA is

he need of an intelligent model that is well-suited to effectively

nhance medical images with roughly bimodal histograms. To the

est of our knowledge, MedGA is the first work that explicitly deals

ith the improvement of thresholding-based segmentation results

 Xue & Zhang, 2012 ). Therefore, our computational framework can

e employed as an intelligent solution in Clinical Decision Sup-

ort Systems (CDSSs). As a matter of fact, MedGA represents an

nterpretable computational model ( Castelvecchi, 2016 ) that allows

or the understandability of the results (i.e., the gray level his-

ogram is readable by the user). The compelling issues related to

he interpretability of Machine Learning and Computational Intelli-

ence methods in medicine are fundamental for the adoption and

he clinical feasibility of a novel CDSS ( Cabitza, Rasoini, & Gensini,

017 ). In addition, no user interaction is required thanks to a reli-

ble calibration step for the parameter settings of the GA. The goal

f this paper consists in showing that evolutionary computation

ethods can boost the state-of-the-art performance in medical im-

ge enhancement, thus fostering GAs as a new concrete support

ool for the clinical practice. Such an expert system may have a

ignificant impact in real healthcare environments. 
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This manuscript is organized as follows. Related literature

orks and a theoretical comparison with existing methods are out-

ined in Section 2 . Section 3 describes the MedGA image enhance-

ent method. The evaluation metrics and the MR images used

o assess the performance of MedGA are described in Section 4 .

ection 5 presents the achieved experimental results, by exten-

ively explaining parameter analysis of MedGA. Finally, discussions

nd conclusive remarks are reported in Sections 6 and 7 , respec-

ively. 

. Background 

.1. Related work 

Most of the existing enhancement techniques are empirical or

euristic methods—strongly related to a particular type of images—

hat generally aim at improving the contrast level of images de-

raded during the acquisition process ( Chen, Yu, Tian, Chen, &

hou, 2018 ). As a matter of fact, finding the best gray level map-

ing that adaptively enhances each different input image can be

onsidered an optimization problem ( Draa & Bouaziz, 2014; Pauli-

as & Ušinskas, 2007 ). Unfortunately, no unifying theory employ-

ng a standardized image quality measure is currently available to

efine a general criterion for image enhancement ( Munteanu &

osa, 2004 ). In addition, in the case of medical imaging, techniques

ailored on specific tasks are necessary to achieve a significant en-

ancement and, in general, interactive procedures involving con-

iderable human effort are needed to obtain satisfactory results. 

In order to achieve objective and reproducible measurements

onveying clinically useful information, operator-dependence

hould be minimized by means of automated methods. Point-

ise operations in the spatial (pixel) domain, representing the

implest form of image processing, are effective solutions since

fficiency requirements have also to be met. In the case of image

nhancement, they re-map each input gray level into a certain

utput gray level, according to a global transformation ( Gonzalez

 Woods, 2002 ). Thus, such kind of techniques treat images as a

hole, without considering specific features of different regions, or

electively distinguishing between a collection of contrast enhance-

ent degrees or settings ( Munteanu & Rosa, 2004 ). Histogram

qualization (HE) is the most common global image enhancement

echnique, whose aim is to uniformly redistribute the input gray

evel values according to the cumulative density function of its

istogram ( Gonzalez & Woods, 2002; Hall, 1974 ). Unfortunately,

E does not take into account the image mean intensity ( Chen

 Ramli, 2003 ), which is subject to a significant change during

he equalization process by invariably shifting the output mean

rightness to the middle gray level, regardless of the mean gray

evel in the input image ( Gan et al., 2014 ). Consequently, HE is

ot able to preserve the input mean brightness, possibly suffering

rom over-enhancement, and giving rise to artifacts such as the

o-called washed-out effect ( Chen & Ramli, 2003 ). This global

ransformation method applies contrast stretching just on gray

evels with the highest frequencies, causing a significant contrast

oss concerning the gray levels characterized by low frequencies

n the input histogram ( Kim, 1997 ). Bi-Histogram Equalization (Bi-

E), which is a refined version of the traditional HE, was proposed

o overcome the limitations related to input mean brightness

reservation, mainly caused by histogram flattening ( Kim, 1997 ).

irstly, Bi-HE splits the original histogram into two sub-histograms

ccording to the global mean of the original image; afterwards,

he sub-histograms are independently processed by applying the

tandard HE method to each of them. 

The complexity of the enhancement criteria to be met (i.e.,
he effective contrast stretching combined with image detail pre-

erving) leads to the application of global search meta-heuristics

hat allow for coping with several constraints, which are not gen-

rally tractable by means of traditional exhaustive computational

pproaches ( Munteanu & Rosa, 2004; Ortiz et al., 2013; Pauli-

as & Ušinskas, 2007 ). Evolutionary methods have been widely

dopted in the image enhancement domain to find the optimal

nhancement kernel ( Munteanu & Rosa, 2004 ), sequence of fil-

ers ( Kohmura & Wakahara, 2006 ), or input-output mapping trans-

ormation ( Carbonaro & Zingaretti, 1999; Saitoh, 1999 ). Recently,

ashemi, Kiani, Noroozi, and Moghaddam (2010) proposed a GA-

ased method that efficiently encodes the histogram by means of

he non-zero intensity levels, by employing genetic operators that

irectly process images to increase the visible details and con-

rast of low illumination regions, especially in the case of high dy-

amic ranges. The authors argued that this method yields “natural-

ooking” images, considering the visual appearance. 

Regarding other evolutionary computation approaches, Genetic 

rogramming (GP) ( Koza, 1992 ) was shown to be a powerful

ramework to select and combine existing algorithms in the most

uitable way. Differently to GAs, GP evolves a population of func-

ions, or more generally, computer programs to solve a computa-

ional task. The solutions in the computer program space can be

epresented as trees, lines of code, expressions in prefix or post-

x notations as well as strings of variable length ( Castelli, Van-

eschi, & Silva, 2014 ). For instance, Bianco, Ciocca, and Schettini

2017) tackled the video change detection problem (among the

rames of video streams) by combining existing algorithms via dif-

erent GP solutions exploiting several fusion schemes. The fitness

unction was composed of different performance measures regard-

ng change detection evaluation. For what concerns the application

f GP in image enhancement, Poli and Cagnoni (1997) proposed

n approach to yield optimally pseudo-colored images for visual-

zation purposes, aiming at combining multiple gray-scale images

e.g., time-varying images, multi-modal medical images, and multi-

and satellite images) into a single pseudo-color image. This ap-

roach relies on user interactions to determine which candidate

olution should be the winner in tournament selection, so it does

ot explicitly require a fitness function. As case studies, a pair of

rain MRI sequences were fused as well as the motion of the heart

n echocardiographic images was synthesized into a single pseudo-

olor image. 

Other works exploited Swarm Intelligence techniques. The ap-

roach presented in Shanmugavadivu and Balasubramanian (2014) ,

alled Multi-Objective Histogram Equalization, uses Particle 

warm Optimization ( Kennedy & Eberhart, 1995 ) to enhance

he contrast and preserve the brightness at the same time.

raa and Bouaziz (2014) employed the same encoding of can-

idate solutions and histogram mapping strategy described in

ashemi et al. (2010) , within an optimization strategy based

n the Artificial Bee Colony (ABC) algorithm ( Karaboga & Bas-

urk, 2007 ). However, since ABC natively works in a continuous

pace, while a discrete representation is used for the solutions

i.e., gray-level mapping), a discretization step is mandatory in

he correction operation during the search phase. An alternative

pproach using the ABC algorithm for image contrast enhancement

as proposed in Chen et al. (2018) , wherein the optimal values for

he parameters of a parametric image transformation, namely the

ncomplete Beta Function, are estimated. Differently to the work

escribed in Draa and Bouaziz (2014) , the optimization procedure

s carried out in a continuous search space. Finally, multi-objective

at Optimization and a neuron-based model of Dynamic Stochastic

esonance were combined in Singh, Verma, and Sharma (2017) for

he enhancement of brain MR images. 
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Fig. 1. Examples of MR images. The ROI bounding region (i.e., the delineated uterus region), which includes the actual ROI (i.e., the uterine fibroid region), is highlighted 

with a white contour. The image regions including the ROIs, zoomed at the bottom right of each sub-figure, are characterized by nearly bimodal histograms. 
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2.2. Theoretical comparison with existing methods 

It is worth noting that all works mentioned in Section 2.1 are

focused on consumer electronics or medical applications, to ob-

tain more “visually pleasant” images by mainly increasing the con-

trast of the whole image. On the contrary, the main key novelty

of MedGA consists in better revealing the two underlying sub-

distributions occurring in an image sub-region characterized by

a roughly bimodal histogram, overcoming the limitations of the

state-of-the-art contrast enhancement methods, which could pro-

duce false edges and consequently over-segmentation when the

input images are affected by noise, as in the case of MRI data

( Gandhamal, Talbar, Gajre, Hani, & Kumar, 2017 ). There exist other

algorithms, like Histogram Specification (HS), whose aim is similar

to MedGA and consists in matching the histogram of the gray level

intensities of the input MR image with a desired output histogram

( Gonzalez & Woods, 2002 ). Unfortunately, this approach cannot be

applied to process image datasets characterized by a high variabil-

ity in gray level distributions, since the histogram to be matched

should be defined either a priori for the whole dataset, or interac-

tively for each processed image, through a procedure that consists

in strengthening and shaping the two underlying sub-distributions.

In such cases, to automatically identify the best solution it is more

advantageous to employ global search meta-heuristics, like GAs

used in MedGA. 

Even though MedGA exploits the same encoding of candi-

date solutions defined in Hashemi et al. (2010) and Draa and

Bouaziz (2014) , its purpose is very different since it was designed

to explicitly strengthen the two sub-distributions of medical im-

ages characterized by an underlying bimodal histogram. To this

aim, we defined a specific fitness function that emphasizes the

two Gaussian distributions composing a bimodal histogram. This

achievement plays a fundamental role for threshold-based segmen-

tation approaches, since they strongly rely on the assumption that

the bimodal histogram under investigation is composed of two

nearly Gaussian distributions with almost equal size and variance

( Xue & Zhang, 2012 ). 

MedGA also differs from GP-based approaches whose gener-

ated solutions might have a large size ( Castelli et al., 2014 ),

even when the GP model is implemented efficiently, thus repre-

senting a limitation that could significantly impair the readabil-

ity and interpretability of the final outcome. Moreover, MedGA

does not require any user interaction step, differently to Poli and

Cagnoni (1997) where the user, being directly involved in the tour-

nament selection, controls the evolution of simple programs that
nhance and integrate multiple gray-scale images into a single

seudo-color image. 

. MedGA: An intelligent method based on Genetic Algorithms 

or medical image enhancement 

MedGA is a global enhancement technique able to improve the

etails of medical images characterized by an underlying bimodal

istogram of gray levels. Given a medical image wherein a ROI

eeds to be enhanced to achieve further analyses, MedGA aims at

mproving the ROI quality to facilitate the classification among dif-

erent neighboring tissues, in order to support both the interpreta-

ion tasks by experienced radiologists and automated image analy-

is approaches. 

The image enhancement carried out by MedGA focuses on the

ixels within a sub-region of the input MRI, called ROI bound-

ng region, including the ROI itself. To be more precise, starting

rom an MR image ( Fig. 1 ), a bounding region that roughly includes

he actual ROI (e.g., the uterus region including uterine fibroids in

ig. 1 ) is identified by using either a manual or a computational

ethod. Afterwards, the entire original MR image is cropped at

he smallest rectangular box including the previously identified ROI

ounding region. The pixels included in the rectangular cropped

mage, but external to the ROI bounding region, are set to zero (i.e.,

he black level). So doing, an image characterized by a nearly bi-

odal histogram is obtained. Then, a linear contrast stretching is

pplied to the initial full range of gray levels, that is, the ordered

et L in = [ l (min ) 
in 

, l (min ) 
in 

+ 1 , . . . , l (max ) 
in 

− 1 , l (max ) 
in 

] ⊂ N , where l � = l ′ for

ny l , l ′ ∈ L in . The integers l (min ) 
in 

and l (max ) 
in 

in L in denote the min-

mum and maximum non-zero gray levels of the analyzed im-

ge sub-region, respectively. The linear contrast stretching applied

o L in exploits the extended range of the non-zero gray levels,

hat is, the ordered set L 

′ 
in = [1 , . . . , l (max ) 

in 
] ⊂ N , where, typically,

 

(min ) 
in 

> 1 . Note that the zero-padding pixels (i.e., the pixels cor-

esponding to the level 0) are not taken into account, and that

ny element of L in is also an element of L 

′ 
in . This normalization

peration, which employs only values of gray levels already rep-

esentable in the initial dynamic range, does not alter the image

ontent and allows MedGA to process additional intensity levels

ith respect to the initial full range L in , by considering the inten-

ity variability within the analyzed MRI dataset. It is worth not-

ng that the pre-processing described hereby does not exploit any

ethod that could affect the actual pictorial content (e.g., spatial

r frequency filtering). 
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Fig. 2. Workflow of MedGA: the individuals are initialized according to the charac- 

teristics of the input MR image, and processed by the GA. The final best solution 

of MedGA strengthens the two underlying distributions in the gray levels intensity 

characterized by mean values μ1 and μ2 and standard deviations σ 1 and σ 2 , re- 

spectively. The two distributions are highlighted in the plot with blue and green 

dashed lines. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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MedGA exploits a population P of individuals C i =
 C i (1) , C i (2) , . . . , C i (n )] (with i = 1 , . . . , | P | ) defined as circular

rrays of integer numbers of size n , where n = | L 

′ 
in | corresponds

o the number of different gray levels belonging to L 

′ 
in identified

n the input MR image (i.e., the gray levels whose frequency is

reater than zero in the input MR image). Each individual C i ∈ P

s randomly initialized by sampling n integer values from the dis-

rete uniform distribution in L 

′ 
in . The n values are then sorted in

scending order so that the intensity levels C i ( j ) (with j = 1 , . . . , n )

odified by the individual can be mapped to the intensity levels

f the input MR image (i.e., the gray level frequencies of the

nput MR image are assigned to the corresponding intensity levels

f the individual). During the initialization of the individuals, if

n integer value is sampled more than once then the frequency

alues of the input MR image, corresponding to these gray level

ntensities, are summed up and assigned to the same gray level of

he individual. 

The rationale of MedGA is to process the ordered set L 

′ 
in 

y modifying its gray levels using a sequence of genetic op-

rators, to obtain a solution characterized by a stronger bi-

odal gray level distribution in an output gray-scale range L out =
 l (min ) 
out , . . . , l (max ) 

out ] ⊂ N , where any element of L out is also an ele-

ent of L 

′ 
in . In such a way, a direct mapping between the gray

evels of the original image and the final one is defined, so that

ach gray level in the original histogram is replaced with the gray

evel value contained by the same position in the final best solu-

ion C best ∈ P . MedGA realizes this global intensity transformation

y improving the separation between H 1 ,i and H 2 ,i , which rep-

esent the dark and bright sub-regions of the histogram H i en-

oded by the individual C i , respectively. To this aim, MedGA ex-

loits the optimal threshold θ opt, i adaptively selected using the It-

rative Optimal Threshold Selection (IOTS) method ( Ridler & Cal-

ard, 1978; Trussell, 1979 ). This procedure yields enhanced medi-

al images that better reveal the bimodal intensity distribution in

omputer-assisted ROI extraction tasks. 

At each iteration of MedGA, a number of individuals properly

elected from the current population are inserted into intermedi-

te populations, and modified by means of crossover and mutation

perators. Note that, at each iteration, each individual C i belong-

ng to the current population codifies for an ordered set L out,i =
 C i (1) , . . . , C i (n )] = [ l (min ) 

out,i 
, . . . , l (max ) 

out,i 
] , which represents a modified

ray level distribution of L 

′ 
in . In order to simplify the notation, in

hat follows we do not explicitly express that, at each iteration ,

ach individual C i is (possibly) represented by a different circular

rray corresponding to L out . 

For the selection of individuals, MedGA exploits a tournament

trategy for three main reasons: ( i ) the selection pressure can be

ontrolled by setting the tournament size k (with k � | P |); ( ii ) the

tness evaluations are performed only on the k individuals se-

ected for the tournaments, and not on the whole population; ( iii )

his technique could be easily implemented on parallel architec-

ures ( Miller & Goldberg, 1995 ). 

A single point crossover operator is applied with a given prob-

bility p c to the individuals selected by the tournament strat-

gy and belonging to the first intermediate population P ′ . Namely,

iven two parent individuals C m 

, C f ∈ P ′ (for some m, f = 1 , . . . , | P | ),
 crossover point is randomly selected from the circular ar-

ays [ C m 

(1) , C m 

(2) , . . . , C m 

(n )] and [ C f (1) , C f (2) , . . . , C f (n )] encod-

ng the individuals, and two offspring are generated by swapping

0% of the values between the two parents. The offspring are then

nserted into a second intermediate population P ′ ′ . 
The mutation operator is applied with probability p m 

to each el-

ment C i ( j) ∈ C i = [ l (min ) 
out,i 

, . . . , l (max ) 
out,i 

] of each individual belonging to

 

′ ′ , where l (min ) 
out,i 

and l (max ) 
out,i 

are the minimum and maximum non-

ero gray levels encoded by C during the current iteration, respec-
i 
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tively. In particular, if the gray level intensity encoded in C i ( j ) is

smaller than the optimal threshold θ opt, i evaluated by IOTS at that

iteration for the individual C i , then an integer is randomly sam-

pled from the uniform distribution in [ l (min ) 
out,i 

, . . . , θopt,i − 1] ⊂ N to

update the value C i ( j ); otherwise, an integer is randomly sampled

from the uniform distribution in [ θopt,i , . . . , l 
(max ) 
out,i 

] ⊂ N to update

the value C i ( j ). 

Finally, to prevent the quality of the best solution from de-

creasing during the optimization, MedGA also exploits an elitism

strategy, so that the best individual from the current population

is copied into the next population without undergoing the genetic

operators. 

Fig. 2 illustrates the overall procedure of MedGA, by present-

ing the initialization phase as well as the flow diagram of the pro-

posed GA for image enhancement. The final best solution shows

the achieved result on MRI data characterized by a bimodal his-

togram, emphasizing the two underlying distributions for the sub-

sequent image thresholding phase, according to the optimal adap-

tive threshold θ opt , computed on the final best solution C best , by

using the simple IOTS algorithm ( Ridler & Calvard, 1978; Trussell,

1979 ). 

To evaluate the quality of the individuals throughout the opti-

mization, the fitness function has been conceived to obtain a bi-

modal histogram in the gray levels intensities, therefore facilitat-

ing further automated image processing phases. The fitness func-

tion F(·) used by MedGA fosters individuals C i characterized by a

histogram with two well separated normal distributions, having an

equal distance from the optimal threshold θ opt, i . To this purpose,

at each iteration MedGA estimates, by using the efficient IOTS algo-

rithm ( Ridler & Calvard, 1978; Trussell, 1979 ), the mean values μ1, i 

and μ2, i of the two components H 1 ,i and H 2 ,i of the histogram H i ,

encoded by each individual C i , according to the current optimal

threshold θ opt, i . Afterwards, at each iteration the fitness function

of every individual C i is calculated as follows: 

F(C i ) = τ1 + τ2 + τ3 , where: 
τ1 = | 2 · θopt,i − μ1 ,i − μ2 ,i | , 
τ2 = | ω 1 ,i − 3 σ1 ,i | , 
τ3 = | ω 2 ,i − 3 σ2 ,i | . 

(1)

The terms ω 1 ,i = 

1 
2 (θopt,i − min 

j∈{ 1 , ... ,n } { C i ( j) } ) and ω 2 ,i =
1 
2 ( max 

j∈{ 1 , ... ,n } { C i ( j) } − θopt,i ) correspond to the half width of H 1 ,i 

and H 2 ,i , respectively, while σ 1, i and σ 2, i are the standard devia-

tions of H 1 ,i and H 2 ,i , respectively. The three terms of the fitness

function F(·) cooperate together to achieve the desired image

enhancement: τ 1 aims at maintaining the mean values μ1, i and

μ2, i equidistant from the yielded optimal threshold θ opt, i , while

τ 2 and τ 3 are designed to force the sub-histograms H 1 ,i and H 2 ,i 

to approximate normal distributions. 

We exploit the empirical property of normal distributions re-

lated to the coverage probability with respect the standard de-

viation. To be more precise, we consider the so-called 3- σ rule,

which states that approximately 99.73% of the values lie within 3 σ
according to: P r(μ − 3 σ ≤ X ≤ μ + 3 σ ) ≈ 0 . 9973 , where μ, σ and

X represent the mean, the standard deviation and an observation

from a normally distributed random variable, respectively. 

Examples of MR image enhancement results, achieved by

MedGA on uterine fibroid, are shown in Fig. 3 . MedGA enhances

the input MR image by making uterine fibroid regions more uni-

form and with strong edges in terms of both visual human per-

ception and automated image processing. The histogram in Fig. 3 d

proves that the output image is characterized by a more defined

bimodal distribution compared to the initial image ( Fig. 3 b), which

roughly tends to a trimodal gray level distribution. 
It is worth noting that, in the case of further automated anal-

sis, ROI pixel classification can be carried out by means of a ba-

ic threshold-based segmentation approach, since MR images en-

anced with MedGA reveal a more precise separation between

he two (possibly overlapping) sub-distributions in the histogram.

ccordingly, MedGA allows for dealing with image histograms

hat do not meet the assumptions imposed by thresholding tech-

iques, regarding bimodal histograms composed of two nearly

aussian distributions with almost equal size and variance ( Xue &

hang, 2012 ). Indeed, MedGA enhances the image thresholding re-

ults on MRI data, as shown in Fig. 2 , where the final best solution

mproves the underlying bimodal nature of the input histogram. 

A sequential and a parallel version of MedGA have been im-

lemented. The sequential version has been entirely developed us-

ng the Python programming language (version 2.7.12), while the

arallel version is based on a Master-Slave paradigm employing

pi4py , which provides bindings of the Message Passing Interface

MPI) specifications for Python to leverage High-Performance Com-

uting (HPC) resources ( Dalcín, Paz, & Storti, 2005 ). 

. Materials and evaluation metrics 

.1. MRI dataset 

Eighteen patients affected by symptomatic uterine fibroids, who

nderwent MRgFUS therapy, were taken into account. The total

umber of the examined fibroids was 29 represented on 163 CE

R slices, since some patients presented a pathological scenario

ith multiple fibroids. The analyzed images were acquired using a

igna HDxt MRI scanner (General Electric Medical Systems, Mil-

aukee, WI, USA) at two different institutions. These MRI data

ere acquired after the MRgFUS treatment, executed with the Ex-

blate 2100 (Insightec Ltd., Carmel, Israel) HIFU equipment. The

onsidered MRI series were scanned using the T1w “Fast Spoiled

radient Echo + Fat Suppression + Contrast mean” (FSPGR+FS+C)

rotocol. This MRI protocol is usually employed for Non-Perfused

olume (NPV) assessment ( Gorny et al., 2011 ), since ablated fi-

roids appear as hypo-intense areas due to low perfusion of the

ontrast medium. Sagittal MRI sections were processed, in compli-

nce with the current clinical practice for therapy response assess-

ent ( Militello, Rundo, & Gilardi, 2014 ). MRI acquisition parame-

ers were: Repetition Time (TR): 150 − 260 ms; Echo Time (TE):

 . 392 − 1 . 544 ms; pixel depth: 16-bit; matrix size: 512 × 512 pix-

ls; slice thickness: 5.0 mm; slice spacing: 6.0 mm; pixel spacing:

 . 6641 − 0 . 7031 mm. 

As explained in Section 3 , before applying MedGA image en-

ancement, the uterus region (i.e., ROI bounding region) must

e delineated. This task can be accomplished manually by

he user or automatically by means of computational meth-

ds to reduce operator-dependency, as previously proposed in

ilitello et al. (2015b) . Afterwards, the pixels with values lower

han the optimal threshold θ opt , computed by means of the effi-

ient IOTS method ( Ridler & Calvard, 1978; Trussell, 1979 ), are seg-

ented in the binarized MR image. In this clinical scenario, seg-

entation approaches must deal with NPV inhomogeneities, due

o sonication spots during the MRgFUS treatment. 

.2. Image enhancement evaluation metrics 

In this section, we recall the definition of the metrics typically

sed to evaluate image enhancement approaches, which will be

xploited to assess the performance of MedGA. These metrics are

ssential to quantitatively evaluate the effects of image enhance-

ent techniques, since measuring the “quality” of an image might

e strongly subjective. In particular, we benefit here from the met-

ics considered in Hashemi et al. (2010) to assess the capability of
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Fig. 3. Enhanced image obtained by MedGA on uterine fibroids of patients who had undergone MRgFUS therapy: (a) input MR image normalized by using linear contrast 

stretching on the initial full range of the masked MR image; (c) output image after the application of MedGA. Plots (b) and (d) report the histograms of gray level intensities 

corresponding to the MR images in (a) and (c), respectively. 
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mage enhancement approaches in improving contrast, details and

uman visual perception. 

Let I orig and I enh be the original input image and the enhanced

mage, respectively, consisting in M rows and N columns. Consid-

ring that the range of gray levels of the output image L out =
 l (min ) 
out , . . . , l (max ) 

out ] could be different from the original range L in =
 l (min ) 
in 

, . . . , l (max ) 
in 

] , as a first step before computing the metrics we

emap the output pixel intensities (i.e., the gray levels) into the

riginal range, as follows: 

˜ 
 enh (a, b) = 

(I enh (a, b) − l (min ) 
out ) · (l (max ) 

in 
− l (min ) 

in 
) 

(l (max ) 
out − l (min ) 

out ) 
+ l (min ) 

in 
, (2)

here a = 1 , . . . , M and b = 1 , . . . , N. Note that we actually consider

he extended range L 

′ 
in 

for I orig , as explained in Section 3 . 

The Peak Signal-to-Noise Ratio ( PSNR ) denotes the ratio be-

ween the maximum possible intensity value of a signal and the

istortion between the input and output images: 

 SNR = 10 · log 10 

(
(l (max ) 

in 
) 2 

MSE 

)

= 20 · log 10 

(
l (max ) 
in √ 

MSE 

)
, 

(3) 

here MSE = 

1 
M×N 

∑ M 

a =1 

∑ N 
b=1 || I orig (a, b) − ˜ I enh (a, b) || 2 is the Mean

quared Error, which allows us to compare the pixel values of I orig 

o those of ˜ I enh . 

Furthermore, the PSNR is usually expressed in terms of the log-

rithmic Decibel scale. With regard to our application, we em-

loy only a limited portion of the full dynamic range of the 16-

it images (see Section 3 ); we thus use as the largest possible

alue the maximum intensity value present in the original image

i.e., l (max ) 
in 

= max {L in } = max { L 

′ 
in } ) instead of the maximum rep-

esentable value in a 16-bit image (i.e., 2 16 − 1 = 65 , 535 ). 

Munteanu and Rosa (2004) stated that good contrast and en-

anced images are characterized by high numbers of edgels (i.e.,

ixels belonging to an edge), and that an enhanced image should
ave a higher intensity of the edges, compared to its non-enhanced

ounterpart ( Saitoh, 1999 ). Therefore, a good enhancement tech-

ique should yield satisfactory results in the case of standard

ision processing tasks, such as segmentation or edge detection

 Starck, Murtagh, Candes, & Donoho, 2003 ). Here, to evaluate im-

ge enhancement of MRI data, we employ the method proposed

y Canny (1986) , which is a highly reliable and mathematically

ell-defined edge detector. This approach deals with weak edges

nd accurately determines edgels, by applying a double threshold

to identify potential edges) and a hysteresis-based edge tracking.

et M Canny be the edge map yielded by the Canny’s edge detec-

or, which is a binary image wherein only edgels are set to 1. The

umber of detected edges ( # DE ) in M Canny is computed as: 

 DE = 

M ∑ 

a =1 

N ∑ 

b=1 

M Canny (a, b) . (4)

An additional metrics, called Absolute Mean Brightness Error

 AMBE ) ( Arriaga-Garcia, Sanchez-Yanez, & Garcia-Hernandez, 2014;

hen & Ramli, 2003 ), can be employed to measure the brightness

reservation of the enhanced image: 

MBE = 

| E [ I orig ] − E [ ̃ I enh ] | 
L 

, (5) 

here E [ ·] denotes the expected (mean) value of a gray level dis-

ribution. AMBE is normalized in [0,1], divided by L = l (max ) 
in 

− l (min ) 
in 

,

hich is the dynamic range of the input gray-scale (in our case,

 

′ 
in ). Note that low values of AMBE denote that the mean bright-

ess of the original image is preserved. 

Finally, we consider an alternative quality metrics called Struc-

ural Similarity Index ( SSIM ) ( Wang, Bovik, Sheikh, & Simoncelli,

004 ), used to assess the image degradation perceived as vari-

tions in structural information ( Bhandari, Kumar, Chaudhary, &

ingh, 2016 ). The structural information defines the attributes that

epresent the structure of objects in the image, independently of

he average luminance and contrast. In particular, local luminance
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Fig. 4. Comparison of the ABF achieved by MedGA with the best parameterizations 

found for each value of | P | tested here. The average was computed over the results 

of the optimization of 80 MR images. 
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and contrast are taken into account since overall values of lu-

minance and contrast can remarkably vary across the whole im-

age. SSIM is based on the degradation of structural information—

assuming that human visual perception is highly adapted for ex-

tracting structural information from a scene—and compares local

patterns of pixel intensities. As a matter of fact, natural image sig-

nals are highly structured, since pixels are strongly dependent on

each other, especially those close by. These dependencies convey

important information about the structure of the objects in the

viewing field. Let X and Y be the I orig and I enh image signals, re-

spectively; SSIM combines three relatively independent terms: 

• the luminance comparison l(X , Y ) = 

2 μX μY + κ1 

μ2 
X 

+ μ2 
Y 
+ κ1 

; 

• the contrast comparison c(X , Y ) = 

2 σX σY + κ2 

σ 2 
X 

+ σ 2 
Y 

+ κ2 
; 

• the structural comparison s (X , Y ) = 

σXY + κ3 
σX σY + κ3 

; 

where μX , μY , σ X , σ Y , and σ XY are the local means, standard

deviations, and cross-covariance for the images X and Y , while

κ1 , κ2 , κ3 ∈ R 

+ are regularization constants for luminance, contrast,

and structural terms, respectively, exploited to avoid instability in

the case of image regions characterized by local mean or standard

deviation close to zero. Typically, small non-zero values are em-

ployed for these constants; according to Wang et al. (2004) , an

appropriate setting is κ1 = (0 . 01 · L ) 2 , κ2 = (0 . 03 · L ) 2 , κ3 = κ2 / 2 ,

where L is the dynamic range of the pixel values in I orig (repre-

sented in L 

′ 
in ). SSIM is then computed by combining the compo-

nents described above: 

SSIM = l(X , Y ) α · c(X , Y ) β · s (X , Y ) γ , (6)

where α, β , γ > 0 are weighting exponents. As reported in

Wang et al. (2004) , if α = β = γ = 1 and κ3 = κ2 / 2 , the SSIM be-

comes: 

SSIM = 

( 2 μX μY + κ1 ) ( 2 σXY + κ2 ) (
μ2 

X 
+ μ2 

Y 
+ κ1 

)(
σ 2 

X 
+ σ 2 

Y 
+ κ2 

) . (7)

SSIM generalizes the Universal Quality Index ( UQI ), defined in

Wang and Bovik (2002) , which is obtained by setting κ1 = κ2 = 0 ,

and yields unstable results when either 
(
μ2 

X 
+ μ2 

Y 

)
or 

(
σ 2 

X 
+ σ 2 

Y 

)
tends to zero. Notice that the higher the SSIM value, the higher the

structural similarity, implying that the enhanced image I enh and the

original image I orig are quantitatively similar. 

5. Results 

This section presents the experimental results achieved by our

image enhancement method. We first analyze the performances of

MedGA by varying the parameter settings of the GA at the basis of

our methodology; we then compared it against the most common

and popular image enhancement techniques in the image process-

ing field (see Gonzalez and Woods (2002) for additional details). 

5.1. MedGA settings analysis and calibration 

To analyze the performances of MedGA and identify the best

settings for the image enhancement problem, we considered a cal-

ibration set consisting of 80 medical images randomly selected

from the available MRI data (described in Section 4.1 ), and we var-

ied the settings of MedGA used throughout the optimization pro-

cess, that is: ( i ) the size of the population | P | ∈ {50, 100, 150, 200};

( ii ) the crossover probability p c ∈ {0.8, 0.85, 0.9, 0.95, 1.0}; ( iii ) the

mutation probability p m 

∈ {0.01, 0.05, 0.1, 0.2}; ( iv ) the size of the

tournament selection strategy k ∈ {5, 10, 15, 20}. In all tests, MedGA

was run for T = 100 iterations. Each MedGA execution was per-

formed by varying one setting at a time, for a total of 320 different

settings tested and a total number of 320 × 80 = 25600 MedGA ex-

ecutions. 
The results of these tests (data not shown) highlighted that,

or each value of | P |, the best settings in terms of fitness values

chieved are: 

1. | P | = 50 , p c = 0 . 85 , p m 

= 0 . 01 , k = 15 ; 

2. | P | = 100 , p c = 0 . 9 , p m 

= 0 . 01 , k = 20 ; 

3. | P | = 150 , p c = 0 . 85 , p m 

= 0 . 01 , k = 20 ; 

4. | P | = 200 , p c = 0 . 85 , p m 

= 0 . 01 , k = 20 . 

Fig. 4 reports the comparison of the performances achieved by

edGA with these settings, where the Average Best Fitness (ABF)

as computed by taking into account, at each iteration of MedGA,

he fitness value of the best individuals over the 80 optimization

rocesses. It is clear from the plot that, despite the final ABF val-

es are comparable in all settings, the convergence speed increases

ith the size of the population, as well as the running time re-

uired by MedGA; therefore, to choose the best settings, we ana-

yzed the computational performances concerning the 4 tests listed

bove. 

Considering that an MRI series related to a single patient con-

ains on average 10 slices with ROI fibroids, we tested the clinical

easibility of MedGA by calculating the total execution time for en-

ancing 10 randomly chosen MR images. For what concerns the

ests 1–4 described above, the executions lasted on average 672.12

, 1290.15 s, 1987.8 s, and 2669.74 s, respectively, for the optimiza-

ion of the same batch of 10 images running a single core of the In-

el Xeon E5-2440 CPU with 2.40 GHz clock frequency. On the other

and, by exploiting the 6 cores of the same CPU to execute the

arallel version of MedGA, we achieved up to 3.6 × speed-up with

espect to the sequential version. The results achieved using the

arallel version of MedGA confirm the importance of HPC solutions

n the field of real healthcare environment to obtain clinically fea-

ible outcomes, that is, enhancing MR images in reasonable time

or medical imaging practice. 

By considering both the performance of MedGA in terms of ABF

nd the running time required to process 80 images, we selected

he parameter settings | P | = 100 , p c = 0 . 9 , p m 

= 0 . 01 , k = 20 as

he best trade-off characterized by a good convergence speed and

n adequate running time (for this specific application), and we

xploited this configuration for all tests reported and discussed in

he following section. 

.2. Comparison with state-of-the-art methods 

The performances of MedGA were compared against the follow-

ng image enhancement techniques: 

• Histogram Equalization (HE) ( Hall, 1974; Paranjape, 2009 ),

which adjusts pixel intensities for contrast enhancement ac-

cording to the normalized histogram of the original image I orig .
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Fig. 5. Plots of the implemented global non-linear intensity transformations for image enhancement: (a) Gamma Transformation; (b) Sigmoid intensity Transformation. We 

report on the x -axis the input intensity range [ l (min ) 
in 

, . . . , l (max ) 
in 

] , and on the y -axis the output intensity range [ l (min ) 
out , . . . , l (max ) 

out ] . 
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With HE, gray levels are more uniformly distributed on the his-

togram, by spreading the most frequent intensity values; 
• Bi-Histogram Equalization (Bi-HE) ( Kim, 1997 )—a modification

of the traditional HE—that addresses issues concerning mean

brightness preservation; 
• Gamma Transformation (GT), which is a non-linear operation

using the power-law relationship s (r) = cr γ , where r and s are

the input and the output gray-scale values, respectively, and

c is a multiplication constant ( c = 1 in the following tests).

The parameter γ is set to values greater than 1 (i.e., decod-

ing gamma) to obtain a gamma expansion, or to values smaller

than 1 (i.e., encoding gamma) to realize a gamma compres-

sion (see Fig. 5 a). In our tests we considered the values γ = 0 . 4

and γ = 2 . 5 , as higher (lower) values of γ tend to logarithmic

(anti-logarithmic) functions, resulting in an excessively bright

(dark) output image, unsuitable for practical medical applica-

tions ( Gandhamal et al., 2017 ); 
• Sigmoid intensity Transformation (ST) function ( Fig. 5 b), also

called S-shaped curve, which is a global non-linear mapping

defined as follows: 

s (r) = 

l (max ) 
in 

1 + exp ( −λ(r − α) ) 
, (8) 

where l (max ) 
in 

= max {L in } = max { L 

′ 
in } is the asymptotic maxi-

mum value of the function, α = 

1 
2 

(
l (max ) 
in 

− l (min ) 
in 

)
is the mid-

point value, and λ defines the function steepness. This trans-

formation stretches the intensity around the level α, by mak-

ing the hypo-intense histogram part darker and the hyper-

intense histogram part brighter. Thus, the difference between

the minimum and maximum gray values and the gradient

magnitude of the image are increased, obtaining strong edges

( Gandhamal et al., 2017 ). In our tests, we used sigmoid func-

tions that allow for considering the entire input dynamic range,

by varying the curve slope with the values λ ∈ 

{
4 
α , 6 

α , 8 
α

}
. 

In order to achieve a thorough comparison between MedGA and

he enhancement techniques listed above, we exploited the entire

et of MRI data consisting in 163 medical images of uterine fi-

roids (including both calibration and unseen data). For each tech-

ique, we computed the metrics PSNR , # DE, AMBE, SSIM defined in

ection 4.2 . The resulting values are given in Fig. 6 (boxplots) and

n Table 1 (median, mean and standard deviation). Overall, these

esults highlight that MedGA significantly outperforms the conven-

ional image enhancement approaches in terms of signal quality
nd perceived structural information in the images, while preserv-

ng the input mean brightness. As a matter of fact, MedGA achieves

he highest PSNR and SSIM median and mean values (see Fig. 6 and

able 1 ). Concerning the other enhancement techniques, we ob-

erve that Bi-HE achieves better performances with respect to HE,

hile increasing the values of γ and λ corresponds to a degrada-

ion of the performances of GT and ST, respectively. 

For what concerns the # DE metrics, HE over-enhances the pro-

essed MR images, as denoted by the highest median and mean

alues achieved, while Bi-HE allows for the preservation of the

ean brightness, as also indicated by the lowest mean value of

MBE . On the contrary, GT achieved the worst performance in

erms of AMBE metrics. This poor result is due to the intrinsic na-

ure of GT that transforms the input gray-scale range into a darker

 γ > 1) or brighter ( γ < 1) one, by increasing the number of hyper-

ntense and hypo-intense pixels, respectively. By doing so, GT does

ot preserve the input mean brightness, thus obtaining the highest

alues of AMBE . All the other methods are characterized by com-

arable # DE values, while the PSNR is characterized by very high

ean values in the case of GT with respect to the other techniques.

n the one hand, considering the SSIM metrics, GT with γ = 0 . 4

emarkably yields better results compared to GT with γ = 2 . 5 , es-

ecially in the case of the SSIM ; on the other hand, all metrics re-

ated to the tested ST functions show that their performances de-

rease as the value of λ increases. This phenomenon is related to

he rapid variation characterizing the highest values of λ, which

o not allow for taking into consideration the existing dependency

mong the pixels, especially those in the neighborhood. 

Finally, we show in Fig. 7 two examples of MR images enhanced

y using all the methods considered in this work. As it can be ob-

erved, MedGA strengthens the ROI edges by enhancing details and

eatures useful for image binarization; this result confirms, from a

ualitative perspective, the quantitative results presented above. 

From an overall view of the metrics, we can claim that the ap-

roaches obtaining the highest values of the # DE measure (i.e.,

E and GT with γ = 2 . 5 ) could imply an over-enhancement of the

utput image, according to the other image quality metrics. This

nding is also confirmed by means of a visual inspection of Fig. 7 ,

here the images enhanced using HE and GT with γ = 2 . 5 present

n inadequate appearance for image observation and interpreta-

ion. To conclude, MedGA achieves outstanding results in perfor-

ance evaluation with respect to classic image enhancement tech-

iques. 
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Fig. 6. Boxplots of the image enhancement evaluation metrics considered in this work, obtained on an MRI dataset composed of 18 patients with uterine fibroids who 

had undergone MRgFUS treatment (total number of MR slices: 163). The lower and the upper bounds of each box represent the first and third quartiles of the statistical 

distribution, respectively, corresponding to the interquartile range. The median and the mean values are represented by a black solid line and a red star, respectively. Whiskers 

value is 1.5 in all cases and outliers are displayed as black diamonds. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Table 1 

Median, mean and standard deviation of image enhancement evaluation metrics achieved by HE, Bi-HE, GT (with γ ∈ {0.4, 2.5}), ST (with λ∈ {4/ α, 

6/ α, 8/ α}) and MedGA, considering the uterine fibroid MRI dataset consisting in a total of 163 medical images. 

PSNR # DE AMBE SSIM 

Median Mean Std. Dev. Median Mean Std. Dev. Median Mean Std. Dev. Median Mean Std. Dev. 

HE 31.331 30.957 2.068 1020 1136.865 561.791 0.077 0.086 0.053 0.864 0.852 0.072 

Bi-HE 32.059 32.014 2.232 929 1048.301 472.550 0.023 0.034 0.029 0.914 0.904 0.046 

GT γ = 0 . 4 30.540 30.223 1.994 707 862.871 510.196 0.221 0.217 0.022 0.824 0.820 0.033 

GT γ = 2 . 5 30.588 30.106 2.063 1012 1092.847 4 4 4.502 0.262 0.261 0.021 0.571 0.573 0.094 

ST λ = 4 /α 34.389 34.127 1.880 883 1011.061 468.799 0.034 0.039 0.024 0.875 0.874 0.031 

ST λ = 6 /α 32.673 32.449 1.950 879 1002.196 4 43.34 4 0.051 0.058 0.035 0.702 0.701 0.074 

ST λ = 8 /α 31.782 31.513 1.983 863 962.141 411.109 0.062 0.070 0.042 0.600 0.598 0.089 

MedGA 37.891 37.914 2.821 841 1008.773 499.906 0.024 0.029 0.023 0.941 0.936 0.029 

Fig. 7. Examples of enhancement achieved on medical images of uterine fibroids by HE, Bi-HE, GT (with γ ∈ {0.4, 2.5}), ST (with λ∈ {4/ α, 6/ α, 8/ α}) and MedGA, compared 

with the original input MR image. 
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6. Discussion 

The main purpose of state-of-the-art methods for image en-

hancement is the improvement of the contrast level of the whole

image, to obtain a “visually pleasant” result. On the contrary,

MedGA is the first enhancement method that explicitly addresses

the challenging issues related to the improvement of medical im-

ages that are characterized by a nearly bimodal gray level his-
ogram distribution. The solution provided by our intelligent image

nhancement system can be beneficial to visually assist physicians

n interactive decision-making tasks, as well as to improve the final

utcome of downstream automated processing pipelines for useful

easurements in the clinical practice ( Rueckert et al., 2016 ). 

MedGA also deals with the practical problems regarding

he interpretability of the results yielded by advanced Machine

earning and Computational Intelligence methods in medicine
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 Cabitza et al., 2017 ). Indeed, the final best solution found by

edGA (i.e., the output gray level histogram) and the correspond-

ng enhanced image are understandable by physicians. In addi-

ion, the efficient encoding of the individuals—taking inspiration

y Hashemi et al. (2010) —coupled with effective HPC solutions,

llows for a clinically feasible computational framework. We de-

igned a specific fitness function to emphasize the two Gaussian

istributions composing a bimodal histogram, while the existing

pproaches based on evolutionary computation or Swarm Intelli-

ence techniques were conceived for a different purpose, i.e., im-

roving the perceived visual information in terms of image con-

rast. Thanks to this ad hoc fitness function—differently to the GP-

ased image enhancement method in Poli and Cagnoni (1997) ,

here no fitness function is defined because the user interactively

elects the best solution—and the robustness achieved by means of

he calibration step for GA’s parameter setting, MedGA does not re-

uire any user interaction step. Moreover, MedGA differs from GP-

ased approaches, in which the final generated solution could have

arge size ( Castelli et al., 2014 ), so heavily affecting the readabil-

ty and interpretability of the provided solutions. The main impact

f this contribution consists in showing how an effective method

ased on evolutionary computation can outperform the existing

ethods in medical image enhancement. 

In this work, we tested and validated our approach on MR im-

ges regarding MRgFUS therapy for uterine fibroids. More gener-

lly, the application of MedGA can be extended also to real-world

roblems involving the analysis of images characterized by an un-

erlying bimodal histogram, as in the case of bright-field and fluo-

escence microscopy imaging ( Meijering, 2012 ). 

Considering the achieved results in terms of # DE (see Table 1 ),

edGA’s performance could be further improved—in terms of

ontrast—by integrating a novel component in the fitness function,

hich explicitly relies on the number of detected edges. Since this

dditional component would have a different purpose and a dif-

erent magnitude, a multi-objective optimization method should

e taken into account. In particular, MedGA could be extended

y means of an effective evolutionary computation approach, such

s NSGA-III ( Deb & Jain, 2014 ), to simultaneously optimize both

onflicting objectives, which consist in maximizing the number of

dges while minimizing the distance between the optimal thresh-

ld and the two normal distributions. 

. Conclusion and future work 

A novel image enhancement method based on GAs, specifically

ailored for medical images characterized by a bimodal histogram,

as proposed in this paper. This computational framework, named

edGA, exploits a fitness function that better reveals the two

nderlying sub-distributions of the gray level intensities, conse-

uently allowing for an improvement in the results achieved by

hreshold-based algorithms. Unlike the traditional image enhance-

ent techniques that generally improve the contrast level of the

hole image, MedGA focuses on MR image sub-regions character-

zed by a roughly bimodal histogram, making it valuable in clinical

ontexts involving CE MRI analysis. 

We tested and validated our approach on MR images represent-

ng uterine fibroids of patients who underwent MRgFUS therapy.

edGA was compared against the most common image enhance-

ent techniques, overall achieving the best performances with re-

pect to both signal and perceived image quality, while preserving,

nlike classic HE techniques, the input mean brightness. This novel

edical image enhancement technique was therefore shown to be

 promising solution, suitable for medical expert systems. 

We remark that, although MedGA exploits the same encod-

ng of individuals defined in Hashemi et al. (2010) and Draa and

ouaziz (2014) we did not compare it to other approaches based
n evolutionary computation or Swarm Intelligence techniques

see also ( Chen et al., 2018 )), since they were conceived for a dif-

erent purpose, that is, improving the perceived visual information

f the whole image. As a matter of fact, these approaches explicitly

nclude in the fitness function both the number of edge pixels and

he intensity of such pixels, thus achieving high # DE values that

ould consistently lead to over-enhanced images. 

As a future extension of this work, in the case of large size im-

ges (e.g., 10 0 0 × 10 0 0 pixels) we plan to use Graphics Processing

nits, which represent an enabling technology for real-time radiol-

gy applications ( Eklund, Dufort, Forsberg, & LaConte, 2013 ), since

he running time of histograms computation can be considerably

educed by using a parallel implementation ( Scheuermann & Hens-

ey, 2007 ). 

In addition, we plan to integrate MedGA as a pre-processing

tep within an automatic pipeline defined in the context of MR

mage classification for efficient computer-assisted segmentation

sing thresholding techniques, such as ( Otsu, 1975; Ridler & Cal-

ard, 1978; Trussell, 1979 ). Indeed, MR image segmentation is a

ompelling task in radiology practice, for instance in brain tumor

etection and delineation ( Sompong & Wongthanavasu, 2017 ). Es-

ecially, we plan to apply MedGA to metastatic cancer segmenta-

ion in neuro-radiosurgery therapy ( Leksell, 1949 ), wherein the en-

ancement region must be accurately segmented ( Militello et al.,

015a; Rundo et al., 2017 ). In order to make the resulting ex-

ert system fully automatic, the segmentation of the ROI bound-

ng region could be performed by robust computational methods

hat can ensure results repeatability during patients follow-up. In

he case of a significant data availability, this step may be per-

ormed by means of approaches based on Deep Neural Networks

 Rajchl et al., 2017 ). In these clinical scenarios, MedGA can be suit-

bly integrated into expert systems tailored for MRgFUS treatment

valuation ( Rundo et al., 2019 ), and brain tumor segmentation in

euro-radiosurgery ( Meier et al., 2016 ). 
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